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SUMMARY

Protein activity is the ultimate arbiter of function in
most cellular pathways, and protein concentration
is fundamentally connected to protein action. While
the proteome of yeast has been subjected to
the most comprehensive analysis of any eukaryote,
existing datasets are difficult to compare, and
there is no consensus abundance value for each
protein. We evaluated 21 quantitative analyses of
the S. cerevisiae proteome, normalizing and convert-
ing all measurements of protein abundance into the
intuitive measurement of absolute molecules per
cell. We estimate the cellular abundance of 92% of
the proteins in the yeast proteome and assess the
variation in each abundance measurement. Using
our protein abundance dataset, we find that a global
response to diverse environmental stresses is not
detected at the level of protein abundance, we find
that protein tags have only amodest effect on protein
abundance, and we identify proteins that are differ-
entially regulated at the mRNA abundance, mRNA
translation, and protein abundance levels.

INTRODUCTION

Proteins are one of the primary functional units in biology. Protein

levels within a cell directly influence rates of enzymatic reactions

and protein-protein interactions. Protein concentration depends

on the balance between several processes including tran-

scription and processing of mRNA, translation, post-transla-

tional modifications, and protein degradation. Consistent with

proteins being the final arbiter of most cellular functions, protein

abundance tends to be more evolutionarily conserved than

mRNA abundance or protein turnover (Laurent et al., 2010;

Christiano et al., 2014). The proteome within a cell is highly dy-

namic, and changes in response to environmental conditions

and stresses. Indeed, protein levels directly influence cellular

processes and molecular phenotypes, contributing to the varia-

tion between individuals and populations (Wu et al., 2013).

Given the influence that changes in protein levels have on

cellular phenotypes, reliable quantification of all proteins present
192 Cell Systems 6, 192–205, February 28, 2018 ª 2017 Elsevier Inc.
is necessary for a complete understanding of the functions and

processes that occur within a cell. The first analyses of protein

abundance relied on measurements of gene expression, and

due to the relative ease of measuringmRNA levels, protein abun-

dance levels were inferred from global mRNA quantification by

microarray technologies (Spellman et al., 1998; Lashkari et al.,

1997). Since proteins are influenced by various post-transcrip-

tional, translational, and degradation mechanisms, accurate

measurements of protein concentration require direct measure-

ments of the proteins themselves.

The most comprehensive proteome-wide abundance studies

have been applied to the model organism Saccharomyces cere-

visiae, whose proteome is currently estimated at 5,858 proteins

(Saccharomyces Genome Database, www.yeastgenome.org).

In contrast to other organisms, several independent methods

for quantifying protein abundance have been applied to budding

yeast, including tandem affinity purification (TAP), followed by

immunoblot analysis-, mass spectrometry (MS)-, and GFP tag-

based methods. Despite the comprehensive nature of existing

protein abundance studies, it remains difficult to ascertain

whether a given protein abundance from any individual study,

independent of other abundance studies, is reliable and accu-

rate. Therefore, aggregating several studies of proteome-wide

abundance can provide insight into the precision of protein level

estimates. Only six existing datasets quantify protein abundance

in molecules per cell (Ghaemmaghami et al., 2003; Kulak et al.,

2014; Lu et al., 2007; Peng et al., 2012; Lawless et al., 2016; Laht-

vee et al., 2017), and no single study offers full coverage of the

proteome. Proteome-scale abundance studies of the yeast pro-

teome in the literature currently number 21 (Ghaemmaghami

et al., 2003; Newman et al., 2006; Lee et al., 2007; Lu et al.,

2007; de Godoy et al., 2008; Davidson et al., 2011; Lee

et al., 2011; Thakur et al., 2011; Nagaraj et al., 2012; Peng

et al., 2012; Tkach et al., 2012; Breker et al., 2013;

Denervaud et al., 2013; Mazumder et al., 2013; Webb et al.,

2013; Kulak et al., 2014; Chong et al., 2015; Lawless et al.,

2016; Yofe et al., 2016; Lahtvee et al., 2017; Picotti

et al., 2013), providing an opportunity for comprehensive anal-

ysis of protein abundance in a eukaryotic cell.

Here we report a unified protein abundance dataset, by

normalizing and scaling all 21 yeast proteome datasets to the

most intuitive protein abundance unit, molecules per cell. We

describe both the accuracy and precision of our dataset, and

use it to address interesting biological questions. We find that

two-thirds of the proteome is maintained between a narrow
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https://doi.org/10.1016/j.cels.2017.12.004
http://www.yeastgenome.org
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cels.2017.12.004&domain=pdf


Table 1. Abbreviations Used for Each Dataset

Abbreviation References Type of Study Detection

Abundance

Measure Medium

Growth

Phase

LU Lu et al., 2007 mass spectrometry label-free spectral counting absolute YPD mid-log

PENG Peng et al., 2012 mass spectrometry label-free spectral counting

and ion volume-based quantitation

absolute minimal early log

KUL Kulak et al., 2014 mass spectrometry label-free peak-based spectral

counting

absolute YPD mid-log

LAW Lawless et al., 2016 mass spectrometry stable-isotope labeled internal

standards and selected reaction

monitoring

absolute minimal chemostat

LAHT Lahtvee et al., 2017 mass spectrometry SILAC and peak intensity-based

absolute quantification

absolute minimal chemostat

DGD de Godoy et al., 2008 mass spectrometry SILAC and ion chromatogram-

based quantification

relative minimal mid-log

PIC Picotti et al., 2009 mass spectrometry stable-isotope labeled internal

standards and selected reaction

monitoring

relative YPD mid-log

LEE2 Lee et al., 2011 mass spectrometry isobaric tagging and ion intensities relative YPD mid-log

THAK Thakur et al., 2011 mass spectrometry summed peptide intensity relative minimal mid-log

NAG Nagaraj et al., 2012 mass spectrometry spike-in SILAC relative YPD mid-log

WEB Webb et al., 2013 mass spectrometry label-free spectral counting relative YPD mid-log

TKA Tkach et al., 2012 GFP microscopy live cells; confocal relative minimal mid-log

BRE Breker et al., 2013 GFP microscopy live cells; confocal relative minimal mid-log

DEN Denervaud et al., 2013 GFP microscopy live cells; wide field relative minimal steady state

MAZ Mazumder et al., 2013 GFP microscopy fixed cells; wide field relative minimal mid-log

CHO Chong et al., 2015 GFP microscopy live cells; confocal relative minimal mid-log

YOF Yofe et al., 2016 GFP microscopy N-terminal GFP; live cells; confocal relative minimal mid-log

NEW Newman et al., 2006 GFP flow cytometry live cells relative YPD mid-log

LEE Lee et al., 2007 GFP flow cytometry live cells relative YPD mid-log

DAV Davidson et al., 2011 GFP flow cytometry live cells relative YPD mid-log

GHA Ghaemmaghami

et al., 2003

TAP-immunoblot SDS extract; immunoblot with

internal standard

absolute YPD mid-log
range of 1,000–10,000 molecules per cell for cells growing with

maximal specific growth rate, and that the global environmental

stress response that is evident at the mRNA level is absent at the

protein abundance level. Finally, simultaneous analysis of tran-

scription, translation, and protein abundance reveals proteins

subject to post-transcriptional regulation, and we describe the

effect of C-terminal tags on protein abundance.

RESULTS AND DISCUSSION

Comparisons of Global Quantifications of the Yeast
Proteome
With 21 global quantitative studies of the yeast proteome

(Table 1), 15 of which are reported in arbitrary units (a.u.), we

sought to derive absolute protein molecules per cell for the pro-

teome for each dataset and analyze the resulting data. We ex-

tracted the raw protein abundance values from the 21 datasets

(Table S1) for the 5,858 proteins in the yeast proteome, and

compared the values (absolute abundance or a.u.) from each

studywith one another, resulting in 210 pairwise correlation plots

(Figure 1). The studies agree well with one another, with Pearson

correlation coefficients (r) ranging from 0.35 to 0.96. Notably, all
studies with abundance measurements derived from GFP fluo-

rescence intensity correlate better with one another than they

correlate with the TAP-immunoblot- or MS-based studies.

Despite the greater correlations among the GFP-derived data-

sets, clustering (after normalization and scaling, see below) did

not reveal confounding correlations that might mask biological

signal (Figure S1). Studies from the same lab, studies using the

same medium, studies using the same detection method, and

studies using MS did not cluster together exclusively.

Protein Copy Number in S. cerevisiae

Normalizing Datasets Reported in a.u.

The most intuitive expression of protein abundance is molecules

per cell. To convert all 21 datasets to a common scale of mole-

cules per cell we had to first normalize the datasets before

applying a conversion factor to those data not expressed in mol-

ecules per cell. The experimental design, data acquisition, and

processing for the different global proteome analyses differ be-

tween studies. As a result, protein abundance is reported on

drastically different scales (Figure S2A). We tested three different

methods to normalize the data reported in a.u.: mode shifting,

quantile normalization, and center log ratio transformation. The
Cell Systems 6, 192–205, February 28, 2018 193
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Figure 1. Scatterplot Matrix of Pairwise Comparisons between Protein Abundance Studies

Protein abundance measurements from 21 studies were natural log transformed, and each pairwise combination was plotted as a scatterplot (bottom left). The

least-squares best fit for each pairwise comparison is shown (red line). The corresponding Pearson correlation coefficient (r) for each pairwise comparison is

shown (top right) and shaded according to the strength of correlation. Mass spectrometry studies are indicated in orange, andGFP-based studies are indicated in

green. Each study is indicated by a letter code as described in Table 1.
results of all three methods of normalization correlate very highly

with one another (r = 0.93–0.97) indicating that the protein abun-

dance valueswe calculate are largely independent of the specific

normalization technique applied (Figure S2B).

We also considered a normalization scheme where each pro-

tein is quantified relative to all other proteins in the dataset, as

was done in PaxDb (Wang et al., 2012, 2015). While this relative

expression of abundance (parts per million) has the advantage of

being independent of cell size and sample volume, it makes
194 Cell Systems 6, 192–205, February 28, 2018
comparison between different datasets difficult if the datasets

measure different numbers of proteins. Thus, the parts per

million normalization alters the pairwise correlations between

datasets (Figure S2C). By contrast, normalization by mode

shifting or center log ratio transformation allows comparison be-

tween datasets by expressing them on a common scale (Fig-

ure S2A), and preserves the correlations that are evident in the

raw data (Figure S2C). Normalization by mode shifting or center

log ratio transformation also allows us to retain proteins whose
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Figure 2. Protein Abundance in 21 Datasets, in Molecules per Cell

(A) The log2 (fold change) between the calibration set and small-scale studies. ORFs are ordered by increasing log2 ratio. The dotted line represents the median.

(B) The log2 (fold change) between the calibration set and the TAP-immunoblot study. ORFs are ordered by increasing log2 ratio. The dotted line represents

the median.

(C) The 21 protein abundance datasets were normalized, converted tomolecules per cell, and plotted. The proteins are ordered by increasingmedian abundance

on the x axis. Letter codes are as in Table 1.

(D) Proteins from each study are highlighted (blue) and plotted with the abundance measurements from all 21 datasets (gray). Mass spectrometry studies are

indicated in black text, GFP-based studies in green, and the TAP-immunoblot study in orange.

(legend continued on next page)
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abundance is not reported in all datasets, thereby affording the

greatest possible proteome coverage.

Finally, we considered normalization schemes that weight da-

tasets differently. An elegant application of a strategy to weight

datasets to minimize variance has been described (Csardi

et al., 2015), yet minimizing variance does not necessarily maxi-

mize accuracy. There is evidence that somemass spectrometric

approaches to quantify absolute protein abundance are more

accurate than others (Ahrné et al., 2013), yet we could find no

clear metric by which to weight datasets across the entire range

of protein abundances and datasets. We tested amatrix of every

possible weighting (between 10%and 90%), for the five datasets

that measured absolute protein abundance (Lu et al., 2007; Peng

et al., 2012; Kulak et al., 2014; Lawless et al., 2016; Lahtvee et al.,

2017), and found no measurable improvement in correlations

with the small-scale studies or with the TAP-immunoblot study.

In the absence of clear evidence that complicated weightings

would improve the final dataset, we chose the simpler mode-

shifting normalization with equal weighting of the datasets.

Converting a.u. to Molecules per Cell

Currently six protein abundance datasets are reported in mole-

cules per cell, five of which are MS-based studies and one of

which used an immunoblotting approach (Lu et al., 2007; Peng

et al., 2012; Kulak et al., 2014; Lawless et al., 2016; Ghaemma-

ghami et al., 2003; Lahtvee et al., 2017). The five MS studies

display a range of positive pairwise correlations (r = 0.43–0.81;

Figure 1), and all measure native unaltered proteins, and so we

reasoned that they could be used to generate a conversion

from relative protein abundance in a.u., to molecules per cell.

We used the mean of the five datasets as a calibration dataset

to convert every other dataset to molecules per cell. Although

it is difficult to discern the accuracy of the protein abundance

values in the calibration dataset, we find that the median ratio

of the calibration dataset values to the protein abundance values

reported for 38 proteins in two small-scale, internally calibrated

studies (Picotti et al., 2009; Thomson et al., 2011), was 1.51 (Fig-

ure 2A; Table S2), suggesting that protein abundance measure-

ments from large-scale studies are similar to those from smaller

scale studies. Similarly, the protein abundances in the calibration

dataset compare well with the proteome-scale immunoblotting

study (Ghaemmaghami et al., 2003): the median ratio of mole-

cules per cell[calibration set] to molecules per cell[immunoblotting set]

is 1.27 (Figure 2B). We conclude that the molecules per cell es-

timates in the calibration dataset are suitable for use in convert-

ing a.u. to molecules per cell.

To identify amodel for converting a.u. tomolecules per cell, we

natural log transformed and compared the normalized arbitrary

abundance units to the calibration dataset, for all datasets, for

the MS datasets alone, and for the GFP datasets alone (Fig-

ure S3A). While the MS datasets have a linear relationship with

the calibration set, it is evident that the GFP data contain a num-

ber of proteins for which abundance is not linearly related to the

calibration set. There is also a sharp cutoff in the GFP data,
(E) The unified dataset is compared with small-scale measurements (top) and w

indicated.

(F) The distribution of yeast protein abundance in molecules per cell, with the firs

areas of the violin plots are scaled proportionally to the number of observations. M

gray, green, and orange, respectively. The unified dataset is colored blue. The n
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below which no abundances are reported. The most likely expla-

nation for these phenomena is that background cellular auto-

fluorescence is greater than the fluorescence measured for

low-abundance GFP fusion proteins. Indeed, one GFP-based

study removed proteins whose fluorescence was close to the

background value in their analysis (Chong et al., 2015). We

calculated the autofluorescence value of the proteins removed

in (Chong et al., 2015), in a.u. after mode-shift normalization

(106.56 a.u.), to remove GFP abundance values that are likely

due to autofluorescence (Figure S3B). This filter reduced the

coverage of our unified dataset from 97% to 92% (5,391 pro-

teins), but yields a slightly higher correlation with the calibration

dataset (r = 0.77). The coefficients of variation increase after

filtering because values where autofluorescence agrees with au-

tofluorescence are removed, leaving higher variance values that

are typical of low-abundance proteins.

To convert all datasets to molecules per cell, a least-squares

linear regression between the natural log transformed calibration

dataset (reported in molecules per cell) and each natural log

transformed mode-shifted study (reported in a.u.) was gener-

ated. The correlation between the calibration dataset and

the aggregate mode-shifted dataset was slightly better than for

the center log transformed dataset (Figure S3C; r = 0.734

versus 0.732), and had a lower sum of standardized residuals,

so we proceeded with normalization by mode shifting. Conver-

sion of all measurements to molecules per cell resulted in a uni-

fied dataset covering 97% of the yeast proteome (Table S3), or

92%of the proteome after removingGFP values that likely reflect

autofluorescence (Table S4).

In general, there is agreement in the molecules per cell for

each protein among the datasets analyzed in our study, with pro-

tein abundance ranging from 3 to 5.9 3 105 molecules per cell

(Figures 2C, 2D, and 2F; Table S4). The relationship of each data-

set to the unified dataset is plotted in Figure 2D, and the distribu-

tion and coverage of each dataset is shown in Figure 2F. We

again assessed accuracy by comparing our aggregate measure-

ments with the small-scale studies and to the TAP-immunoblot

study (Figure 2E), finding correlations of r = 0.82 and 0.76, and

median differences of 1.66- and 1.23-fold, respectively.

Of the 5,858 protein proteome, 467 proteins were not detected

in any study (Table S5). The 467 proteins are enriched for

uncharacterized open reading frames (ORFs) (hypergeometric

p = 7.6 3 10�137). The 201 verified ORFs that were not detected

are enriched for genes involved in the meiotic cell cycle and in

sporulation (p = 2.4 3 10�25 and p = 1.0 3 10�23, respectively).

Less than 10% of the yeast proteome is not expressed during

mitotic growth in rich medium. Therefore, only a relative handful

of proteins are likely to be unneeded in standard laboratory

growth conditions.

Variance in Protein Abundance Measurements
A key difference between our comparative analysis and each

individual protein abundance study is that we report many
ith the TAP-immunoblot study (bottom). The Pearson correlation coefficient is

t quartile (Q1), median, and third quartile (Q3) indicated by horizontal bars. The

ass spectrometry-, GFP-, and TAP-immunoblot-based studies are colored in

umber of proteins detected and quantified in each study is indicated.
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Figure 3. Variability of Each Protein Abun-

dance Measurement

Proteins were ordered by increasing median

abundance and binned into deciles. The coeffi-

cient of variation was calculated for each protein

and plotted. The protein abundance levels asso-

ciated with each bin are indicated, as is the me-

dian CV for each bin. The red lines indicate the

third quartile, the median, and the first quartile for

each bin.
independent estimates of protein level per ORF in a common unit

of molecules per cell. Therefore, we are in a position to explore

the variation in reported values for each ORF across 21 datasets.

We calculated the coefficient of variation (CV) (SD/mean, ex-

pressed as a percentage) across the yeast proteome. In general,

the CVs are modest, with 4,048 of 5,065 abundance measure-

ments for which a CV could be calculated having a CV of

100% or less (Table S4). The greatest median CVs (higher than

80%) were exhibited by low-abundance proteins (<866 mole-

cules per cell) and high-abundance proteins (>14,923 molecules

per cell) (Figure 3). Interestingly, CV values are, on average,

higher for the MS-based measurements than for the GFP-based

measurements (65% and 29%, respectively). The lowest CV

values (60%–70%) are observed for proteins present at 1,311–

14,922 molecules per cell. Therefore, we conclude that the

measurement of abundance is most precise for the 62% of the

measured proteome that is within this abundance range and

that precision is better for the GFP measurements, provided

they are above the autofluorescence level of �1,400 molecules

per cell.

The MS-based analyses exhibit the greatest sensitivity, with

measurements as low as three molecules per cell, and four

studies in particular (Kulak et al., 2014; de Godoy et al.,

2008; Thakur et al., 2011; Peng et al., 2012) have both the

best proteome coverage (greater than 4,000 proteins) and a

large detection range, detecting fewer than 50 to greater

than 100,000 molecules per cell. Interestingly, the four studies

utilize different quantification methods, and are among the

most highly inter-correlated MS studies (r = 0.68–0.82), indi-

cating that distinct approaches can yield similarly sensitive

quantifications of the yeast proteome that are in agreement

with one another.

Functional Enrichment of Low- and High-Abundance
Proteins
We next asked whether particular cellular processes tend to be

performed by proteins that are expressed at similar levels.
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Budding yeast is unique in having a

comprehensive map, where genes and

pathways have been placed into func-

tional modules (Costanzo et al., 2016)

(Figure 4A). We used spatial analysis of

functional enrichment (SAFE) (Baryshni-

kova, 2016) to explore whether regions

of the functional cell map (Costanzo

et al., 2016) are enriched for high- and

low-abundance proteins (Figure 4B). We
found that high-abundance proteins were specifically over-

represented in regions associated with cell polarity and morpho-

genesis, and with ribosome biogenesis (Figure 4B, yellow).

Low-abundance proteins were over-represented in the region

associated with DNA replication and repair, mitosis, and RNA

processing (Figure 4B, teal).

Gene ontology term enrichment analysis yielded results

consistent with SAFE analysis (Figure 4C). The decile comprising

the least-abundant proteins was enriched for response to

DNA damage stimulus (p = 0.0056), mitotic cell-cycle regulation

(p = 1.1 3 10�5), and protein ubiquitination (p = 6.6 3 10�5),

perhaps reflecting the importance of restricting the abundance

of cell-cycle regulators and DNA repair factors. The most highly

expressed proteins tended to be proteins involved in translation

in the cytoplasm (p = 3.0 3 10�140) and related processes,

consistent with the key role of protein biosynthetic capacity in

cell growth and division (Warner, 1999; Volarevic et al., 2000;

Jorgensen et al., 2002; Bernstein and Baserga, 2004; Yu et al.,

2006; Bjorklund et al., 2006; Teng et al., 2013). Previous analysis

of the human proteome, with 73%coverage, indicated functional

enrichment for high-abundance proteins, but failed to detect

enrichment of function for low-abundance proteins (Beck et al.,

2011). One possibility is that the combination of more sparse

functional annotation of the human proteome (relative to annota-

tion in yeast) combined with incomplete proteome coverage pre-

cluded detection of functional enrichment of low-abundance

proteins. However, since the highest abundance categories of

human and yeast proteins were similarly enriched for ribosome

components there is evidence that relationships between protein

function and abundance are evolutionarily conserved.

The Protein Abundance Distribution of the Proteome
The protein abundance distribution of the complete proteome

has not been well characterized, therefore what defines a

high-abundance protein versus a low-abundance protein is un-

clear. The abundance of the typical cellular protein is unknown,

as is the abundance range that characterizes most cellular
ystems 6, 192–205, February 28, 2018 197
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Figure 4. Functional Enrichment of High- and Low-Abundance Proteins

(A) SAFE annotation of the yeast genetic interaction similarity network to identify regions of the network enriched for similar biological processes

(Costanzo et al., 2016).

(B) The protein abundance enrichment landscape is plotted on the genetic interaction profile similarity network. Colored nodes represent the centers of local

neighborhoods enriched for high- or low-abundance proteins, shaded according to the log of the enrichment score. The outlines of the gene ontology (GO)-based

functional domains of the network where protein abundance enrichment is concentrated are shown.

(C) Violin plot of the distribution of abundances for the yeast proteome. The first decile and tenth decile are shaded in teal and yellow, respectively. The blue

shaded area represents 67% of all protein abundance measurements.
proteins. Large-scale quantifications of yeast protein levels

suggest that few proteins are very highly expressed, but these

analyses relied on limited data covering only �70% of the pro-

teome (Ghaemmaghami et al., 2003; Kulak et al., 2014). With

our unified dataset, we find that yeast protein abundance,

when logarithmically transformed, is skewed toward high-abun-

dance proteins (Figure 4C). Protein abundance ranges from

zero to 7.5 3 105 molecules per cell, the median abundance

is 2,622 molecules per cell, and 67% of proteins quantified

exist between 1,000 and 10,000 molecules per cell (Figure 4C).

Low-abundance proteins, the first decile, have abundances

ranging from 3 to 822 molecules per cell, while high-abundance

proteins, the tenth decile, have abundances ranging from

1.4 3 105 to 7.5 3 105. Our data suggest that protein copy
198 Cell Systems 6, 192–205, February 28, 2018
number is maintained within a narrow range from which only

a small portion of the proteome deviates.

Total Protein Content of a Yeast Cell
An estimate of yeast cell protein content can be derived from the

cellular protein mass per unit volume and the mass of the

average protein (Milo, 2013). Using a density of 1.1029 g/mL

(Bryan et al., 2010), a water content of 60.4% (Illmer et al.,

1999), and a protein fraction of dry mass of 39.6% (Yamada

and Sgarbieri, 2005), typical of yeast in standard growth condi-

tions, we calculate 0.17 g of protein per mL. With an average

protein mass of 54,580 Da, and mean logarithmic phase cell vol-

ume of 42 mm3 (Jorgensen et al., 2002), we calculate 7.9 3 107

protein molecules per cell. Adding the median abundances of
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Figure 5. Identification of Proteins with

Post-Transcriptional and Post-Transla-

tional Regulation

(A) Protein abundance compared with mRNA

levels measured by RNA sequencing.

(B) Protein abundance compared with ribosome

footprint abundance from an aggregate of five

ribosome-profiling analyses.

(C) A three-dimensional scatterplot of RNA tran-

script level, ribosome density, and protein abun-

dance, with outliers colored by k-cluster as

defined in (D).

(D) k-Means clustering of outliers (Mahalanobis

distance >12.84) from comparison of mRNA

abundance, translation rate (ribosome density),

and median protein abundance. Each row corre-

sponds to a gene, and is colored according to

ln(mode-shifted abundance or rate) in a.u..

(E) Example outliers are shown with their associ-

ated cluster and colored according to ln(mode-

shifted abundance or rate) in a.u.. The a.u. values

are also indicated.
all detected proteins in our unified abundance dataset, we arrive

at a total of 4.23 107 protein molecules per yeast cell, or 0.53 of

the calculated estimate. Total protein content estimates derived

from individual studies agree well with our estimate (4.5 3 107

[Ghaemmaghami et al., 2003], 5.3 3 107 [von der Haar, 2008],

and 5 3 107 [Futcher et al., 1999]), and also tend to be lower

than the calculated estimate of 7.9 3 107 molecules per cell.

We infer that our aggregate abundance estimates are likely ac-

curate within 2-fold, on average.

RNA Expression and Translation Rate Both Capture
Variance in Protein Abundance
The degree to which mRNA levels can explain protein abun-

dance remains unclear (Vogel and Marcotte, 2012), as mRNA

and protein concentrations have been reported to correlate

well in some studies (Csardi et al., 2015; Franks et al., 2015),

and poorly in others (Ingolia et al., 2009; Lahtvee et al., 2017).

We reasoned that a more complete view of the relationship

between transcript and protein abundance could be obtained

with our comprehensive protein abundance dataset. We

compared protein molecules per cell with mRNA levels from

three microarray and three RNA sequencing (RNA-seq) datasets
Cell S
(Roth et al., 1998; Causton et al., 2001;

Lipson et al., 2009; Nagalakshmi et al.,

2008; Yassour et al., 2009). Between

37% and 56% of the variance in protein

abundance that we observe is explained

by mRNA abundance, as measured by

microarray (r = 0.61–0.68) and RNA-seq

(r = 0.67–0.75), with both mRNA method-

ologies performing similarly in estimating

protein levels (p = 0.21, two-tailed t test;

Figure S4A). Higher correlations between

mRNA and protein abundance have been

reported (r = 0.66–0.82) (Futcher et al.,

1999; Greenbaum et al., 2003; Franks

et al., 2015) in studies using less compre-
hensive protein abundance datasets (2,044 proteins at most),

and more sophisticated analysis indicates that the true correla-

tions could be higher, due to experimental noise (Csardi

et al., 2015). Our protein abundance dataset correlates similarly

with translation rates measured in ribosome-profiling studies

(r = 0.67–0.75; Figure S4B) (Ingolia et al., 2009; Brar et al., 2012;

Albert et al., 2014; Pop et al., 2014; Weinberg et al., 2016). When

themRNA abundance and ribosome-profiling datasets are aggre-

gated,wefind that ribosomeprofilingcapturesonlyslightlymoreof

theprotein abundance variance thandoesmRNAabundance (Fig-

ures 5A and 5B). Our data indicate that in unperturbed conditions

mRNA abundance and ribosome footprint analysis explain similar

fractions of protein abundance variance, in agreement with previ-

ous analysis (Csardi et al., 2015). Indeed, when we compare the

aggregate of three RNA-seq studies of mRNA abundance with

five independent studies of protein synthesis by ribosomal

profiling, they correlate well (r = 0.89; Figure S4C).

The Balance between Transcriptional and Translational
Regulation
Although mRNA abundance and ribosome profiling capture

similar fractions of the variance in protein abundance, it is likely
ystems 6, 192–205, February 28, 2018 199



that there is a complex interplay between transcriptional and

translational regulation for individual proteins. We sought to cap-

ture this complexity by comparing protein abundance, mRNA

abundance, and ribosome density simultaneously (Figure 5C).

We calculated Mahalanobis distances, a metric used for identi-

fying multivariate outliers, reasoning that outliers are proteins

that are differentially regulated at either the transcriptional, trans-

lational, or protein level. A total of 200 proteins were identified as

outliers and were k-means clustered to reveal patterns of co-

regulation (Figure 5D; Table S6). The outliers were enriched for

cytoplasmic translation (33 proteins, p = 8.43 3 10�29) and

glucose metabolic processes (11 proteins; p = 2.2 3 10�6). We

find several instanceswhere proteinswith similar function cluster

with one another (Figure 5E). For example, histone H4 subunits

(HHF1 and HHF2) cluster together (cluster 4), having high

mRNA expression, lower translation rates, and high protein

levels, suggestive of co-regulation. Additional examples include

COX1/COX2, COS1/COS6, and TIF1/TIF2.

We also find cases of proteins within the same family whose

expression pattern are not covariant, perhaps revealing func-

tional differences. Three members of the HSP70 gene family,

SSA1, SSA2, and SSB1, are found in a different cluster than

SSA3 (cluster 4 versus 3; Figure 5E), indicating differential

regulation. It has been noted that SSA3 has a greater role in

Hsp104-independent acquired thermotolerance during heat-

shock stress in comparison with other protein family members,

and thus its expression may be regulated differently (Hasin

et al., 2014). The glucose transport genes HXT4 and HXT7 also

lie in different groups (cluster 4 versus 3). Both have high tran-

script and protein levels, and lower than expected translation

rates. However, HXT4 appears to be engaged by ribosomes

more frequently than HXT7. These proteins are functionally

distinct based on their affinity for glucose, which may explain

differences in their regulation. While transcriptional regulation

of yeast hexose transporters has been extensively studied, our

data suggest that detailed analysis of the translational compo-

nent of hexose transporter regulation could be fruitful, especially

in conditions of varying glucose levels.

Among the five clusters, we find functional enrichment only in

cluster 4 (cytoplasmic translation; p = 8.43 3 10�29), which is

characterized by high protein and transcript levels, but lower

translation rates, indicating a role for negative regulation of trans-

lation in controlling ribosomal protein abundance. Indeed, further

downregulation of translation of ribosome biogenesis gene tran-

scripts is apparent upon starvation (Ingolia et al., 2009), and

protein turnover data indicate that ribosome protein synthesis

is tightly coordinated in budding yeast (Christiano et al., 2014).

A non-linear relationship between ribosomal protein mRNA

abundance and ribosomal protein abundance has been noted

in fission yeast (Marguerat et al., 2012), and is consistent

with the lower than expected translation rates that we find in

budding yeast.

Proteins in cluster 5 have lower protein abundance than

expected, given the RNA level and translation rates. Half-life

measurements have been reported for several proteins in clus-

ter 5, and five of six proteins measured (Belle et al., 2006), and

three of three proteins measured (Christiano et al., 2014), have

half-lives lower than the median, consistent with the lower than

expected protein abundances in cluster 5.
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The improvement in proteome coverage of our abundance da-

taset facilitates more detailed analyses of the relationships be-

tween transcription, translation, and protein abundance and

could be useful in making functional predictions from patterns

of similar transcriptional/translational regulation, and to explore

other genes where transcription, translation, and protein abun-

dance are not co-directional.

The Effect of Protein Fusion Tags on Native Protein
Abundance
Protein fusion tags are utilized extensively, yet the effect

of tags on protein abundance has not been assessed system-

atically. The 4,502 yeast strains used to measure protein

abundance by GFP fluorescence all express proteins with

C-terminal fusions to GFP (Huh et al., 2003), with the excep-

tion of the Yofe et al. (2016) study, which analyzed N-terminal

GFP fusions. Fusion to GFP sequences adds an extra 27 kDa

to the native protein, alters the identity of the C terminus, and

changes the DNA sequence of the 30 UTR of the gene. We

reasoned that proteins whose expression differs greatly be-

tween mass spec datasets (which measure native proteins)

and GFP datasets are likely affected by the presence of the

tag. We compared the median ln abundance between MS-

and GFP-based abundance studies, applying a t test to define

outliers (p < 0.05; Figure 6; Table S7). A total of 716 proteins

were identified, with 281 proteins showing at least 2-fold

(and as much as 50-fold) lower abundance when GFP-tagged

(Figures 6A and 6B). Of the 281 proteins, 259 have been as-

sessed as C-terminal fusions to the 21 kDa TAP tag (Ghaem-

maghami et al., 2003). Of the 259, 141 proteins also had

reduced abundance (by at least 2-fold) when TAP tagged, sug-

gesting that these proteins are either destabilized by the pres-

ence of any protein tag at the C terminus, or require their

native 30 UTR for mRNA stability. The 118 proteins that

decreased in abundance when GFP-tagged but not when

TAP tagged could represent GFP-specific protein destabiliza-

tion, or protein-specific issues with fluorescence detection

(Waldo et al., 1999). Interestingly, 57 of the 281 proteins with

reduced abundance when C-terminal GFP-tagged were also

assessed as N-terminal GFP fusions (Yofe et al., 2016), with

31 having reduced abundance (by at least 2-fold), irrespective

of the location of the GFP tag. We also observed 259 proteins

that had at least 2-fold greater abundance when tagged with

GFP (to as much as 67-fold), indicating that in some cases

GFP could stabilize its protein fusion partner.

Together, our data indicate that changes in protein abundance

can occur upon adding additional sequences to the C terminus,

and we find that 12% of the 4,502 proteins measured with C-ter-

minal GFP tags have statistically supported abundance changes

of greater than 2-fold when tagged with GFP. Since 1,356 pro-

teins are absent from the C-terminal GFP datasets, it is possible

that additional proteins are affected by the presence of a tag. Of

these, 467 proteins were not detected by any method and so are

likely not expressed during normal mitotic growth. Two hundred

and thirteen proteins showed no abundance change > 2-fold

when detectedwith a TAP tag.We infer that atmost an additional

676 proteins, for a total of 22% of the detectably expressed pro-

teome, could be affected by tagging. Thus, the proteins absent

from existing GFP datasets are unlikely to affect the general
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Figure 6. Identification of Proteins Whose Expression Is Influenced by Protein Fusion Tags or by Stress Conditions

(A) Means of mass spectrometry (MS) abundance values are plotted against means of GFP abundance values. GFP-tagged proteins with lower abundance or

greater abundance compared with MS measurements are indicated in orange and blue, respectively (t test, p <0.05).

(B) Mean MS, TAP-immunoblot (TAP), and GFP protein abundance values for each identified outlier are compared. Proteins are ordered by increasing MS

abundance, with each bar representing a single protein (top). The log2 ratio of the MS abundance to the GFP abundance (middle) or TAP abundance is displayed

for each outlier (bottom).

(C) Proteins are ordered by increasing mean abundance in unperturbed conditions. Proteins that increase or decrease in abundance in a stress condition are

colored red or blue, respectively, and gray bars span 2 SDs of abundance in unperturbed conditions.

(D) The number of proteins that change in abundance in the given number of stress conditions is indicated, with the area of the circles proportional to the number

of proteins that change in abundance. The stress conditions considered are MMS, HU, rapamycin, H2O2, DTT, nitrogen starvation, and quiescence.
conclusion that the yeast proteome can tolerate C-terminal

tags well.

Changes in Protein Abundance under Environmental
Stresses
Given that protein concentration directly influences cellular pro-

cesses and function, we were interested to use our molecules

per cell dataset to determine absolute protein abundance

following stress. External stressors can perturb cellular pro-

cesses and activate the environmental stress response, a mech-

anism for cells to protect themselves from fluctuating conditions

in the environment (Gasch et al., 2000, 2001; Gasch andWerner-

Washburne, 2002; Causton et al., 2001). The environmental

stress-response genes were identified through microarray ana-

lyses, but have not been studied at the protein level. High-

throughput fluorescence microscopy and MS have enabled
large-scale analyses of the proteome after exposure to diverse

stresses, including quiescence, DNA replication stress condi-

tions, oxidative stress, nitrogen starvation, reductive stress,

and rapamycin treatment, providing an opportunity to compare

changes in protein levels across studies investigating condi-

tion-dependent protein abundance changes and to elucidate a

protein core stress response. To simplify the comparisons,

we focused on GFP-based studies, which are available for hy-

droxyurea, methyl methanesulfonate, oxidative stress, reductive

stress, nitrogen starvation, rapamycin treatment, and quies-

cence (Davidson et al., 2011; Tkach et al., 2012; Breker et al.,

2013; Denervaud et al., 2013; Mazumder et al., 2013; Chong

et al., 2015). MS datasets are available for diploid cells, heat

shock, high salt, quiescence, different temperatures, ethanol,

and 13 different carbon sources (de Godoy et al., 2008; Nagaraj

et al., 2012; Lee et al., 2011; Webb et al., 2013; Usaite et al.,
Cell Systems 6, 192–205, February 28, 2018 201



2008; Paulo et al., 2015, 2016; Lahtvee et al., 2017), but are not

considered here.

Since the majority of proteins do not change in abundance in

any given stress condition, we normalized GFP intensities from

each study by the mode-shifting method and applied the same

linear regressions used previously to convert a.u. to protein mol-

ecules per cell (Table S8). We consider a protein to change in

abundance in stress if the molecules per cell value is more

than 2 SDs from the mean of the abundance measurements

without stress (Figure 6C; Table S9). At this cutoff, 1,973 of the

4,100 proteins assessed change in abundance in at least one

stress, and 616 of the 1,973 proteins have a fold change greater

than 2. The abundance changes range up to 109-fold for in-

creases and to 49-fold for decreases (Table S9). Proteins that

increased or decreased in abundance during stress tended to

be of higher abundance in unperturbed cells than the proteome

median (Figure S5), and low-abundance proteins do not show a

tendency to be upregulated in response to stress (the first decile,

hypergeometric p = 1).

Unexpectedly, 68% of the abundance changes were

observed in only one or two conditions, suggesting that most

condition-dependent regulation of protein abundance levels

could be stress specific (Figure 6D). Six proteins (Afg3, Rpt6,

Isa1, Rax2, Dat1, and Rna1) were the most universal stress

responders, increasing in abundance in all seven stress condi-

tions. By contrast, the mRNA environmental stress response

includes some 900 transcripts that are differentially expressed

in multiple distinct stress conditions (Gasch, 2007; Gasch

et al., 2000, 2001; Gasch and Werner-Washburne, 2002; Caus-

ton et al., 2001), including heat shock, oxidative stress, reductive

stress, nutrient starvation, DNA damage, and pH. Focusing on

oxidative stress, reductive stress, nitrogen starvation, and DNA

damage, which are represented in the protein abundance data,

we find only 26 proteins that change in abundance in all 4 condi-

tions. Our data suggest that changes in mRNA expression of

general stress-response genes are not reflected rapidly at the

protein abundance level.

Ribosome biogenesis proteins are strongly over-represented

in the proteins that decrease in abundance during stress

(p = 1.37 3 10�18, 210 proteins), and are also over-represented

in the mRNA environmental stress response (Gasch et al., 2000,

2001; Causton et al., 2001). By contrast to the mRNA response,

however, the decrease of ribosome biogenesis proteins is

specific to stresses that cause G1 delay (rapamycin, nitrogen

starvation, and quiescence), and does not extend to oxidative,

reductive, and DNA damage stress. Thus, we see no clear evi-

dence for a global protein abundance response to stress. The

apparent absence of a global protein response likely reflects

the short half-life of a typical mRNA (�32 min) (Geisberg et al.,

2014) compared with the considerably longer median protein

half-life (8.8 hr [Christiano et al., 2014]; 2.0 hr [Martin-Perez

and Villen, 2015]). In addition, diverse post-transcriptional

regulation modes can be brought to bear on protein function,

including regulation of translation, protein degradation, protein

modification, and intracellular localization changes, such that

protein function need not be altered at the level of abun-

dance alone.

The availability of four protein abundance datasets for MMS

treatment (Lee et al., 2007; Tkach et al., 2012; Denervaud
202 Cell Systems 6, 192–205, February 28, 2018
et al., 2013; Mazumder et al., 2013) allows us to assess the

variation among different abundance change analyses. When

the four datasets (Table S8) are compared, there are 128

proteins with a statistically supported change (Student’s t test,

p < 0.05), ranging from a 2.3-fold decrease to an 8.5-fold

increase. Within this higher-confidence protein abundance in-

crease cohort that we identified, functional enrichment for ubiq-

uitin-mediated proteolysis (p = 8.1 3 10�5) and response to

oxidative stress (p = 1.83 10�3) was evident. We previously de-

tected the connection between MMS treatment and oxidative

stress-response proteins (Tkach et al., 2012), but failed to iden-

tify the upregulation of proteasome components and ubiquitina-

tion enzymes when analyzing a single stress-response dataset.

Thus, meta-analysis of protein abundance studies provides a

path to identification of new functional connections among

cellular stress-response pathways.

In conclusion, we provide a comprehensive view of protein

abundance in yeast by normalizing and combining 21 abun-

dance datasets, collected byMS, GFP fluorescence flow cytom-

etry, GFP fluorescence microscopy, and western blotting. Since

cellular autofluorescence interferes with detection of GFP fluo-

rescence, we find that the lower limit for reliable detection of

GFP proteins corresponds to �1,400 molecules per cell. Above

this threshold we found less variation among GFP-based studies

than among MS studies, suggesting that although MS analyses

provide the greatest sensitivity and dynamic range for protein

measurements, the GFP-based measurements have greater

precision. Collectively, our analyses indicate that protein abun-

dance in the yeast proteome ranges from 3 to 7.5 3 105 mole-

cules per cell, with a median abundance of 2,622 molecules

per cell. We define the lowest abundance proteins as those pre-

sent at 866 or fewer copies, and the highest abundance proteins

as those with 14,938 or more copies.

Protein abundance directly influences cellular processes and

phenotypes. The plasticity of the proteome in stress conditions

has been extensively investigated in yeast. Our normalization

scheme allowed us to unify the available data and report protein

abundance in a single common unit of molecules per cell, in both

unperturbed cells and in response to stress. This method can be

applied to other abundance datasets in other stress conditions

or to other organisms for comparative studies. Our unified pro-

tein abundance dataset provides a useful resource for further

analysis of the dynamic regulation of the proteome.
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METHOD DETAILS

Data Collection and Processing
We gathered 21 data sets from published studies measuring protein abundance across the yeast proteome, either reported in arbi-

trary units or in molecules per cell (Ghaemmaghami et al., 2003; Newman et al., 2006; Lee et al., 2007; Lu et al., 2007; de Godoy et al.,

2008; Davidson et al., 2011; Lee et al., 2011; Thakur et al., 2011; Nagaraj et al., 2012; Peng et al., 2012; Tkach et al., 2012; Breker

et al., 2013; Denervaud et al., 2013; Mazumder et al., 2013; Webb et al., 2013; Kulak et al., 2014; Chong et al., 2015; Lawless

et al., 2016; Yofe et al., 2016; Lahtvee et al., 2017; Picotti et al., 2009). Throughout our analysis, we used designated codes to refer

to each study (Table 1). Unperturbedmeasurements derived from (Chong et al., 2015) are themean of the three technical replicates in

their study, and for stress conditions the 160 minute data for hydroxyurea and the 700 minute data for rapamycin were used. Mea-

surements in unperturbed cells derived from (Denervaud et al., 2013) were accessed at https://github.com/opencb/cellbase and are

themean of all time points prior to their treatment condition. For (Peng et al., 2012), the average of all data was used. For (Webb et al.,

2013), the average of the emPAI values from the three micro MudDPIT replicates was used. For (Yofe et al., 2016), abundance mea-

surements obtained from proteins expressed from their native promoters were used.

For the purposes of our analysis, we consider the yeast proteome to consist of 5858 proteins (SaccharomycesGenome Database,

www.yeastgenome.org, accessed October 28, 2016), encoded by 5157 verified ORFs and 701 uncharacterized ORFs (only 2 verified

ORFs,GPC1 and ANY1, have been added since). We excluded 746 dubious ORFs, as defined in the SaccharomycesGenome Data-

base, from our analysis. Although some had peptides detected by mass spectrometry as annotated in the PeptideAtlas (http://www.

peptideatlas.org) andGlobal ProteinMachine (GPM, http://www.thegpm.org) databases, only 6 had good evidence for expression as
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defined by GPM. Proteins encoded by transposable elements, although readily detected, are not included in our analysis

because most do not map to a unique ORF. Abundance data were called out of each of the 21 datasets using the 5858 protein

ORFeome (Table S1).

Data Transformation and Assessing Correlation
The natural logarithm was taken for each data set, since this is approximately normally distributed and thus suitable for linear regres-

sion analyses. All analyses and calculations were performed on natural log transformed data, unless specified otherwise. Pearson

correlation coefficient (r) was used for all correlation analyses.

Normalization of Arbitrary Unit Abundance Values
Mode shift normalization was applied to all studies that measured relative protein abundance and reported values in arbitrary units

(Table 1). Each study that required normalization was natural log transformed and divided into 50 bins of equal abundance range. The

median value of the bin with the greatest number of observations (values reported) was defined as the mode of the distribution.

A scalar value was applied to each study to shift the mode to an arbitrarily chosen value of 100 arbitrary units. Mode shift normalized

values were used for the remainder of the analysis.

For comparison to the mode shift normalization, studies were also quantile normalized and center log ratio transformed. For quan-

tile normalization, proteins with a reported measurement from every study were retained for analysis, and quantile normalization was

performed as described (Qiu et al., 2013). To normalize data sets by the center log ratio transformation method, arbitrary abundance

measurements for each protein from each study were divided by the geometric mean and log10 transformed:

center log ratio = log10 (Xi/geometric mean (X)).

Converting Protein Abundance from Arbitrary Units to Molecules per Cell
Mean protein abundance for each ORF was calculated for the five mass spectrometry-based studies reporting absolute protein

abundance (Lu et al., 2007; Peng et al., 2012; Kulak et al., 2014; Lawless et al., 2016; Lahtvee et al., 2017). We used the mean value

for each protein as our calibration set (Table S1) so that the contribution of each study was weighted equally. The calibration set was

natural log transformed, as was each normalized protein abundance dataset. Prior to calculating protein molecules per cell from arbi-

trary units, a filter was applied to remove GFP-based protein measurements that were likely within autofluorescence levels. Mode-

shift normalized measurements for proteins labeled as autofluorescent in (Chong et al., 2015) were extracted from their dataset. The

maximum value (106.549 arbitrary units) within this subset of proteins was defined as autofluorescence in our dataset. Any protein in

the other GFP datasets with a normalized value less than 106.549 arbitrary units was labeled as ‘autofluorescence’ and removed from

the remainder of the analysis. A linear least-squares regression was applied tomodel the relationship between the calibration set and

each abundance dataset. The resulting equations were then applied to each protein abundance dataset to convert arbitrary units to

molecules per cell.

Clustering Analysis
Clustering analyses were performed on natural log transformed median protein abundance in molecules per cell for the 21 studies.

Hierarchical agglomerative clustering was performed using complete linkage clustering on the dissimilarity matrixmeasuring the sim-

ilarity between each of the studies analyzed. Each dataset is its own independent cluster and iteratively combined by Euclidean dis-

tance, with the distance between each cluster being recomputed using the Lance-Williams algorithm, into larger clusters.

Clustering by k-means was performed with six defined centres. To determine an appropriate number of k clusters, the total within-

cluster sum of squares was measured with increasing numbers of clusters. A total of six clusters were determined suitable for

k-means clustering analysis since increasing the number of clusters did not provide better modelling of the data, as determined

by measuring the decrease in total within-cluster sum of squares.

Calculating Coefficients of Variation
For each ORF, the coefficient of variation (CV) was calculated by:

CV = 1003
SDORF

Mean

The CV was calculated for each ORF when at least two measurements were reported.

Gene Ontology Term Enrichment
GO term analysis was performed using the GO term finder tool (http://go.princeton.edu/) using a p-value cutoff of 0.01 and applying

Bonferroni correction, querying biological process or component enrichment for each gene set. After removing high frequency terms

(>10% of background gene set), GO term enrichment results were further processed with REViGO (Supek et al., 2011) using the

‘‘Medium (0.7)’’ term similarity filter and simRel score as the semantic similarity measure.
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Spatial Analysis of Functional Enrichment (SAFE)
Functional annotation of the aggregated median protein abundance measurements on available genetic similarity networks

constructed by Costanzo et al. (2016) was performed as previously described (Baryshnikova, 2016), using Cytoscape v3.4.0

(Cline et al., 2007; Shannon et al., 2003).

Identifying Abundance Differences between GFP and Mass Spectrometry Studies
An unpaired, two-tailed t-test was performed between the 11 mass spectrometry and 8 GFP studies for each protein. Abundance

differences were considered to be statistically supported if the p-value was less than 0.05.

RNA Level, Ribosome Profiling, and Protein Abundance Comparison
RNA transcript levels in arbitrary units from RNA-seq datasets (Yassour et al., 2009; Lipson et al., 2009; Nagalakshmi et al., 2008),

translation rates in arbitrary units from ribosomal profiling (Albert et al., 2014; Brar et al., 2012; Ingolia et al., 2009; Pop et al., 2014;

Weinberg et al., 2016), and median protein abundance in molecules per cell from this study were mode-shift normalized and natural

log transformed. Themeanwas determined for the natural log transformedRNA and ribosomal profiling data. Mahalanobis distances

have been previously used in multivariate outlier detection analysis (Hodge and Austin, 2004). Therefore, we identified multivariate

outliers by calculating Mahalanobis distances for each gene/protein. Proteins with Mahalanobis distances greater than 12.84

were considered outliers (Chi-squared distribution, alpha level = 0.005, degrees of freedom = 3).

Changes in Protein Abundance in Stress Conditions
For each study considered for analysis, unperturbed and stress measurements were mode-shift normalized, filtered for autofluores-

cence, and converted to molecules per cell as described above. The standard deviation was calculated for each protein from the

seven GFP studies for the unperturbed condition. Any protein observation from any single study with an abundance measurement

in a stress condition that was greater than 2 or less than 2 standard deviations from the mean was considered to be a protein with

changed abundance.

Proteins with significant abundance changes in the MMS treatment conditions compared to the unperturbed condition were

identified using an unpaired, two-tailed t-test (p < 0.05).

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analysis, data manipulation, and data visualization was performed in R (https://www.r-project.org). All of the details of

data analysis can be found in the Results and Method Details sections.

DATA AND SOFTWARE AVAILABILITY

Datasets are provided in the Tables S1, S2, S3, S4, S5, S6, S7, S8, and S9. The R scripts used for data analysis are provided in

the Data S1.
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Figure S1. Related to Figure 1. Hierarchical and k-means clustering of normalized and scaled data sets. 
Twenty-one protein abundance data sets were subjected to hierarchical clustering (A) or k-means clustering (B). 
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for GFP fluorescence, blue for immunoblotting). Studies from the same lab are designated (a, b, c). Studies 
where cells were grown in rich media are designated with squares (the rest used minimal media). Data sets that 
measured absolute abundance are indicated in bold.



18

0

5

15

10

19 20 21 22 23

Protein Abundance (Arbitrary Units) Protein Abundance (Arbitrary Units)

Raw Data Mode-Shift Normalization

D
en

si
ty

DGD

LEE2

THAK

NAG

PIC

WEB

TKA

BRE

DEN

MAZ

CHO

YOF

NEW

LEE

DAV

101 103 107 1011 10-2 101 104

C

B

A

D

ln(quantile normalization) ln(quantile normalization)ln(mode-shift normalization)

C
en

tre
-lo

g 
ra

tio

C
en

tre
-lo

g 
ra

tio

ln
(m

od
e-

sh
ift

no
rm

al
iz

at
io

n)
ln

(m
ea

n 
of

 m
ol

/c
el

l)

ln
(m

ea
n 

of
 m

ol
/c

el
l)

ln
(m

ea
n 

of
 m

ol
/c

el
l)

ln(mean of mode-
shift normalization mol/cell)

ln(mean of quantile
normalization mol/cell)

mean of centre-log
ratio normalization mol/cell

Calibration set vs.
Mode shift

Calibration set vs.
Quantile normalization

Calibration set vs.
Centre-log ratio

r = 0.96 r = 0.93 r = 0.97 

r = 0.73 r = 0.74 r = 0.73 

LU
LU DGD

NAG
BRE

DEN
NEW

GHA

DGD

NAG

BRE

DEN

NEW

GHA

PPM
Normalization

0.56

0.53

0.62

0.70

0.70

0.58

0.81

0.69

0.65

0.76

0.66

0.63

0.66

0.75

0.78

0.82

0.68

0.90

0.68 0.780.64

LU DGD
NAG

BRE
DEN

NEW
GHA

LU

DGD

NAG

BRE

DEN

NEW

GHA

Mode-Shift
Normalization

0.56

0.53

0.62

0.70

0.70

0.58

0.83

0.69

0.65

0.76

0.66

0.62

0.66

0.77

0.68

0.78

0.82

0.68

0.90

0.68 0.78

LU DGD
NAG

BRE
DEN

NEW
GHA

LU

DGD

NAG

BRE

DEN

NEW

GHA

Raw Abundance
Measurements

0.56

0.53

0.62

0.70

0.70

0.58

0.83

0.69

0.65

0.76

0.66

0.62

0.66

0.77

0.68

0.78

0.82

0.68

0.90

0.68 0.78

18
-5

0

5

10 2

1

0

-1

-2

-3

2

1

0

-1

-2

-3
19 20 21 22 23 -5 0 5 10 18 19 20 21 22 23

0 0

10 10

0-4 440 8

Figure S2. Related to Figures 1 and 2. Normalization methods and comparisons to the calibration abundance 
data set. (A) Raw protein abundance measurements from studies reporting arbitrary units (left) were mode-shift 
normalized (right). (B) Protein abundance measurements were normalized using mode-shift, quantile, or centre-log 
ratio normalization methods. The mean abundance for each protein was calculated following normalization, and each 
was compared to the others. (C) Pearson correlation coefficients were calculated for each pairwise comparison of the 
seven studies indicated. Correlation coefficients were calculated for the raw abundance measurements (left), parts per
million normalized datasets (middle), or mode-shifted datasets (right). Boxes shaded in red indicate correlations that 
are not equivalent to correlations among the original raw datasets. (D) Each normalization method was compared with 
the mean abundance from the calibration data set. Pearson correlation coefficients (r) are indicated in each plot.
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Figure S4. Related to Figure 5. Comparison of protein abundance with mRNA levels. (A) Protein 
abundance (natural log of the median number of molecules per cell) is compared with mRNA levels measured 
by microarray analyses from three independent studies (natural log of arbitrary units), and with mRNA levels 
measured by RNA sequencing analysis (natural log of reads per kilobase of transcript per million mapped reads 
(RPKM)). (B) Protein abundance (natural log of median molecules per cell) is compared with ribosome footprint 
abundance (natural log of RPKM) from ribosome profiling analysis. (C) Three RNA seq data sets (Nagalakshmi 
et al. 2008; Lipson et al. 2009; Yassour et al. 2009) and five ribosomal profiling data sets (Ingolia et al. 2009; 
Brar et al. 2012; Albert et al. 2014; Pop et al. 2014; Weinberg et al. 2016) were mode-shift normalized as 
described in the methods and subsequently natural log transformed. The mean of the transformed datasets was 
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Figure S5. Related to Figure 6. Abundance distributions of the proteome and proteins that change 
in stress. The protein abundance distribution in molecules per cell is presented as a violin plot for all 
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